Plumber IP Formulas

$1 \mathrm{ft}^{2}$ EDR $=240$ Btuh

1 U.S. gal. $=8.33 \mathrm{lb}$.

12000 BTU of cooling $=1$ ton
Boyle's law: $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}$

Charles' Law: $\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$

Expansion $=$ length $\times \Delta T \times$ coefficient of expansion

Force $=$ pressure \times area
$\mathrm{gpm}=\frac{\mathrm{BTU}}{\mathrm{lb} . / \mathrm{gal} . \times \Delta \mathrm{T}}$
gpm $=\frac{\text { total Btuh }}{\Delta \mathrm{T} \times \text { mass } \times \text { minutes } \times \text { specific heat capacity }}$
Grade $=\frac{\text { drop or rise }}{\text { run }}$
Grains $=(\#$ of persons \times gallons per day $)$
\times (hardness in grains + iron concentration $\times \#$ of persons)
x days of regeneration $+20 \%$

Litres $=$ area \times rainfall intensity

Pressure $=$ height \times density

Pressure head conversion unit $=0.433 \mathrm{psi} / \mathrm{ft}$.
Travel offset of a 45° elbow $=1.414$

Plumber IP Formulas continued

Hydronic Thermal Formulas

$\Delta T=\frac{\text { Btuh }}{500 \times \mathrm{gpm}}$
gpm $=\frac{\text { Btuh }}{500 \times \Delta \mathrm{T} \text { (water) }}$

Btuh $=g p m \times 500 \times \Delta T$

Circumference / Perimeter

Circumference of circle $=\pi d$

Perimeter of rectangle $=2(\mathrm{~L}+\mathrm{W})$

Perimeter of triangle $=a+b+c$

Area

Area of circle $=\pi r^{2}$

Area of cylinder (open top) $=\pi r^{2}+\pi d H$

Area of cylinder (totally enclosed) $=2 \pi r^{2}+\pi d H$

Area of rectangle box $($ open top $)=(\mathrm{L} \times \mathrm{W})+2(\mathrm{~W} \times \mathrm{H})+2(\mathrm{~L} \times \mathrm{H})$

Area of rectangle box (totally enclosed $)=2(\mathrm{~L} \times \mathrm{W})+2(\mathrm{~W} \times \mathrm{H})+2(\mathrm{~L} \times \mathrm{H})$

Area of rectangle $=\mathrm{L} \times \mathrm{W}$

Area of sphere $=\pi d^{2}$ or $4 \pi r^{2}$
Area of triangle $=\frac{\mathrm{bH}}{2}$

Plumber IP Formulas continued

Volume

Volume of cylinder $=\pi r^{2} \mathrm{H}$

Volume of rectangle box $=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
Volume of sphere $=\frac{4 \pi r^{3}}{3}$

Coefficients

Material	Coefficient of linear expansion per $\mathbf{1}^{\circ} \mathrm{F}$	Coefficient of linear expansion per $\mathbf{1}^{\circ} \mathrm{C}$
ABS	0.0000550	0.0000990
Brass	0.0000105	0.0000189
Cast iron	0.0000059	0.0000108
Copper	0.0000095	0.0000171
PVC	0.0000330	0.0000594
Steel	0.0000067	0.0000120

Conversion factors

To Convert	To	Multiply by
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	1.8 and add 32
gpg (grains per U.S. gal.)	ppm	17.12
kg	lb.	2.205
$\mathrm{~kg} / \mathrm{m}^{3}$	$\mathrm{lb} . / \mathrm{ft.}^{3}$	0.06243
kN	lb.	224.81
kN / m	$\mathrm{lbf} / \mathrm{ft}$.	68.52
$\mathrm{kN} / \mathrm{m}^{3}$	$\mathrm{lbf} / \mathrm{ft.}^{3}$	6.360
kPa	$\mathrm{lbf} / \mathrm{in.}^{2}(\mathrm{psi})$	0.1450
kPa	$\mathrm{lbf} / \mathrm{ft.}^{2}$	20.88
L	$\mathrm{gal} .(\mathrm{imp})$.	0.2200
$\mathrm{~L} / \mathrm{s}$	$\mathrm{gal} . / \mathrm{min}(\mathrm{gpm})$	13.20
m	ft.	3.281
$\mathrm{~m}{ }^{2}$	$\mathrm{ft}{ }^{2}$	10.76
mm	in.	0.03937
$\mathrm{~m} / \mathrm{s}^{2}$	$\mathrm{ft}. / \mathrm{s}^{2}$	3.281

